Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
Article . 2021
Data sources: VBN
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Active flutter control of the wind turbines using double-pitched blades

Authors: Zhengqing Chen; Bei Chen; Bei Chen; Zili Zhang; Xugang Hua; Søren Nielsen;

Active flutter control of the wind turbines using double-pitched blades

Abstract

Abstract Classical flutter of a wind turbine blade is a concerned issue to hinder the wind utilization to a large extent. Recent predictions showed a decreasing flutter margin (the ratio of flutter speed to rated rotor speed) with the increase in wind turbine size. To address this issue, a new blade configuration called the double-pitched blade is proposed and analytically investigated for its potential to enhance the flutter suppressing capability of modern large-size wind turbine blades. This new blade comprise an inner part and a tip part, where the tip part can rotate (or pitch) independently with respect to the inner part through a tip actuator commanded by a feedback control law. The aerodynamic loads of blade tip due to the actively controlled rotation of the tip part provide a torque on the inner part, which provides damping for the torsional mode of the wind turbine blade. The effectiveness of this new double-pitched blade for suppressing flutter is verified through a simulation study conducted on a 907-DOF aero-servo-elastic wind turbine model. Parametric studies are performed on two main design parameters, i.e. the length of the tip part and the associated chordwise location of tip shaft with respected to the blade cross section, and flutter control performance are obtained by numerical optimization process. Simulation results show the optimal length of tip part is around 3.3 % of blade length, and the associated chordwise location of tip shaft is around 45 % of chord length, the flutter amplitude of the conventional blade can be mitigated to around 4 % using this double-pitched blade.

Country
Denmark
Related Organizations
Keywords

Classical flutter, Double-pitched blade, Active vibration control, Horizontal axis wind turbines

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%