Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IGU Institutional Op...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Clean energy development in the United States amidst augmented socioeconomic aspects and country-specific policies

Authors: Andrew Adewale Alola; Seyi Saint Akadiri;

Clean energy development in the United States amidst augmented socioeconomic aspects and country-specific policies

Abstract

Abstract The drive toward the attainment of sustainable environment globally through clean energy development or energy efficiency is not more desirable than in the 21st century, thus the existential policy moderations of economic, trade and security mechanisms. On this premise, and foremost in the literature, the current study examined the country-specific (for the United States) and the driving impacts of economic policy uncertainty, trade policy and national security on the development of cleaner energy sources by using quarterly frequency time series data for period 1990:Q1-2018:Q2. By employing economic expansion as additional factor, the study implemented the Autoregressive Distributed Lag Bounds Testing approach to reveal interesting results: (1) there is a significant evidence that economic expansion, economic policy uncertainty (EU), trade policy (TP), and national security (NS) exhibits long term properties in common, (2) the increase in economic expansion and NS effectiveness significantly yields more cleaner energy development, and (3) a more tightened TP and high EU are statistically significant and detrimental to the development of clean energy. The Granger causality evidence substantiates the role economic expansion, TP, EU and national security in renewable energy development. Generally, the study posits cleaner and energy efficiency policy directive for policymakers in the United States and other countries of interest from the framework of climate action and sustainable development.

Country
Turkey
Keywords

National security, United States, Economic uncertainty, Renewable energy development, Sustainable development, Trade policy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 1%
Top 10%
Top 1%
Green