Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Renewable energies: Simulation tools and applications. A special issue of Renewable Energy Journal dedicated to BS 2019 conference

Authors: Adolfo Palombo; Annamaria Buonomano; Andreas K. Athienitis;

Renewable energies: Simulation tools and applications. A special issue of Renewable Energy Journal dedicated to BS 2019 conference

Abstract

Today, the use of renewable energies in buildings represents one of the main ways to reach a sustainable world. Whilst present buildings are still often energivorous systems, in the near future they will have to be converted to (or replaced by) zero energy buildings, also capable to export green energy (produced on-site by renewables) towards other buildings and/or users. This review article focuses on a selection of research papers, presented at the 16th International Conference on Building Simulation (BS 2019), regarding renewable energy applications, energy saving and comfort techniques for buildings. BS 2019 conference was organized in collaboration with the International Building Performance Simulation Association (IBPSA) and it was held at the Angelicum Congress Centre (San Tommaso d’Aquino Pontifex University) in Rome, Italy, during September 2-4, 2019. The conference was attended by 912 researchers and experts, with 660 presented research papers. The above-mentioned selection of papers is included in a dedicated Special Issue of the Renewable Energy - An International Journal (RENE), titled “Renewable energies: simulation tools and applications”. Reported studies are mostly dedicated to models, simulations, and optimization procedures of renewable energy devices. Specifically, photovoltaic systems, building integrated photovoltaic collectors, hybrid photovoltaic/thermal systems, solar thermal collectors as well as other energy efficiency tools are analysed through different simulation approaches and suitable optimization procedures. Attention is also paid to specific case studies related to innovative combinations of renewable energy devices and innovative envelope materials in different building typologies and weather zones. In some papers, solar energy is exploited for space heating and cooling purposes, while in other articles renewables or other energy tools are studied to achieve comfort targets, low grid dependencies, smart building/communities, and mainly the zero energy building goal.

Country
Italy
Keywords

Optimization, Renewable energy, Renewable energy, Simulation, Optimization, Simulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average