
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Grid synchronization of variable speed pump-turbine units in turbine mode

Abstract The S-shaped characteristics of the pump-turbine may cause instability and thus leads to difficulties in grid synchronization. This paper develops a complete model for a pumped storage power plant and studies the start-up and grid synchronization procedure of two 300 MW variable speed units at no load in turbine mode. Based on the grid-voltage-oriented vector control method, the stator voltage of the doubly-fed induction machine is controlled to meet the grid connection requirements. Compared with the fixed speed units, the simulation results show that for a pump-turbine with typical S-shaped characteristics, the fixed speed unit cannot meet the grid connection requirements due to the unstable unit speed. Whereas, the variable speed unit can quickly reach synchronization with the grid voltage. For a pump-turbine without typical S-shaped characteristics, the synchronous unit can meet the grid connection requirements, but it takes a longer time and the stator voltage is not stable enough, while the variable speed unit is 11 times faster and more stable. The effects of PI parameters on the synchronization process of a variable speed unit are also studied. The results show that with suitable PI control parameters, the synchronization process can be accelerated without large overshoot of the rotor power.
- Tsinghua University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
