Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions

Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia

Authors: Jundika C. Kurnia; Zulfan A. Putra; Oki Muraza; Seyed Ali Ghoreishi-Madiseh; Agus P. Sasmito;

Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia

Abstract

Abstract Abandoned oil well can be a promising alternative to be retrofitted to extract geothermal energy than the conventional geothermal well. This study investigates the potential of converting abandoned oil well into geothermal energy power plant by combining computational fluid dynamics (CFD) simulation, process simulation, and techno-economic analysis. A detailed CFD model was formulated and validated with verified data from published literature. The model was then utilized to study key performance variables on heat extractions coupled with the Organic Rankine Cycle (ORC) to generate power and its subsequent techno-economic analysis. The results indicate that, due to relatively low temperature profile in typical Malaysian wells, the Levelized Cost of Electricity (LCOE) of the ORC system was found to be almost double than that of conventional geothermal technologies. To reduce the LCOE, at least four abandoned wells in a close proximity are required. Alternatively, other renewable energy sources (e.g., solar, biomass) could be used to upgrade the geothermal well. This techno-economic analysis shall serve as a preliminary assessment on the feasibility of utilizing abandoned oil wells in Malaysia for geothermal energy extraction.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
bronze