Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable Energy
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable Energy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Techno-economic and exergy analysis of tank and pit thermal energy storage for renewables district heating systems

Authors: orcid Alice Tosatto;
Alice Tosatto
ORCID
Harvested from ORCID Public Data File

Alice Tosatto in OpenAIRE
orcid Abdulrahman Dahash;
Abdulrahman Dahash
ORCID
Harvested from ORCID Public Data File

Abdulrahman Dahash in OpenAIRE
Abdulrahman Dahash; orcid Fabian Ochs;
Fabian Ochs
ORCID
Harvested from ORCID Public Data File

Fabian Ochs in OpenAIRE

Techno-economic and exergy analysis of tank and pit thermal energy storage for renewables district heating systems

Abstract

Abstract Large-scale thermal energy storage (TES) emerges as key for the expansion of renewables-based district heating (R-DH) as it is able to bridge the seasonal gap between the heating demand and the availability of renewable energy resources (e.g. solar energy). This work develops a framework for techno-economic analysis considering several key performance indicators (e.g. energy efficiency, exergy efficiency). As TES systems integrated in DH are typically stratified, the work also examines the TES by means of stratification number and efficiency. The economic feasibility of the TES options is examined via the TES specific investment cost. Then, the work recommends the levelized cost of stored heat (LCOS) as a practical measure for the TES techno-economic feasibility. The outcomes show that the tank has higher performance in terms of efficiency indicators (energy and exergy) and stratification measures, but it is characterized with high specific cost. Yet, the tank LCOS is lower compared to that of the shallow pit due to its low performance and despite its low specific cost. Thus, in order to take advantage of the tank's better performance and shallow pit's lower specific cost, the work proposes a third TES geometry called as hybrid TES that combines both tank and shallow pit. The results reveal the potential of this geometry as it arises as a promising option. Furthermore, the results indicate that the transition to low-temperature R-DH brings technical and economic advantages as the LCOS tends to be lower compared to that of TES installed in high-temperature R-DH. Moreover, the work reveals that due to the importance of increasing the economic feasibility for large-scale TES, it is of crucial to develop new materials and construction methods to ensure cost-efficient insulation of the buried TES.

Country
Austria
Keywords

Techno-economic assessment, Levelized cost of stored heat, Renewable district heating, Planning and construction, Exergy analysis, Seasonal thermal energy storage

29 references, page 1 of 3
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right
36 citations, page 1 of 4
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • addClaim
    more_vert
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
Green
hybrid