
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A methodology to estimate average flow rates in Water Supply Systems (WSSs) for energy recovery purposes through hydropower solutions

Abstract Energy efficiency interventions in Water Supply Systems (WSSs) need a precise evaluation of the available water flow rates for energy recovery interventions; however, flow meters are generally too costly for being installed in all the gravity adduction pipelines of a WSS. This paper presents a methodology for predicting flow rates in gravity adduction pipelines based on the electricity bill consumption. In this study, the predicted average flow rate is 0.0300 m3∗s−1, being 1.64% lower than the real one. A Pelton turbine has been chosen as energy recovery unit for supplying electricity to a pumping station of a preloading tank where the water is treated to make it drinkable. An energy saving of 475.26 (MW∗h)∗year−1 is achieved, which can be also expressed as 88.87 saved Tonnes of Oil Equivalent (TOE) and 204.36 ktCO2 not released into the atmosphere. The gross economic saving due to the installation of the Pelton turbine is equal to 94.29 k€∗year−1 and it can be further increased up to 116.51 k€∗year−1 if the energy efficiency certificates issued by the Italian Authorities are considered. The Payback Period (PBP) of the intervention corresponds to 3 years, and a Net Present Value (NPV) after twenty years is approximately 1.4 M€.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
