Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith University:...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cu–Mn–O nano-particle/nano-sheet spinel-type materials as catalysts in methanol steam reforming (MSR) and preferential oxidation (PROX) reaction for purified hydrogen production

Authors: Venkata D.B.C. Dasireddy; Blaž Likozar;

Cu–Mn–O nano-particle/nano-sheet spinel-type materials as catalysts in methanol steam reforming (MSR) and preferential oxidation (PROX) reaction for purified hydrogen production

Abstract

Abstract Nanocomposite Cu–Mn–O nano-particle (CuMnNP) and nano-sheet (CuMnNS) catalyst were successfully prepared using a one-step hydrothermal method in the absence of any templating reagent. Materials were characterised applying various structural techniques. SEM images showed that composite Cu–Mn oxide sheets were tailor-made synthesised by a one-pot urea-abetted protocol. Conversely, upon replacing carbamate by Na2CO3, oxidised metal Cu–Mn particles could be obtained. The formation of bulk mixed Cu–Mn phases resulted in an enhanced crystal lattice oxygen reactivity in CuMnNS. XPS, XRD and TPR measurements confirmed the presence of the Cu+ and Cu2+ species in nano-catalysts, and CuMnNS nanomaterials possessed more surface defects, thus causing a higher O2 adsorption/storage capacity. CuMnNS presented a superior catalytic activity as opposed to CuMnNP in the preferential oxidation (PROX) pathway of CO. With both CO2 and H2O in feed, a decrease in CO turnover was observed, due to a competitive interface binding of CO, CO2 and H2O. Compared to CuMnNP, CuMnNS also demonstrated a high time-on-stream conversion of methanol for the reforming for all operating conditions.

Country
Australia
Keywords

Technology, Science & Technology, Energy & Fuels, Engineering, Science & Technology - Other Topics, Green & Sustainable Science & Technology

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research