Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A mathematical model for CO2 conversion of CH4-producing biocathodes in microbial electrosynthesis systems

Authors: Qiang Liao; Qian Fu; Hao Chen; Zhuo Li; Zhuo Li; Xun Zhu; Shuai Xiao; +1 Authors

A mathematical model for CO2 conversion of CH4-producing biocathodes in microbial electrosynthesis systems

Abstract

Abstract Microbial electrosynthesis systems are a novel device for simultaneous CO2 reduction and CH4 production, and the CH4-producing biocathode in this system is the key component. This work presents a mathematical model to insight into the process of CH4 production on the biocathode. The model couples bioelectrochemical reaction, charge balance, mass transfer, dissolution of gaseous CO2 and interconversion of hydrated CO2, H2CO3, HCO3− and CO32−. To our knowledge, this is the first theoretical report for CH4-producing biocathodes in microbial electrosynthesis systems. This model is capable of predicting the response of CH4-producing biocathodes with operating time under various conditions and describing the effects of different parameters on CH4 production. The results suggest that the most important processes which influence the performance of biocathodes are the interconversions of hydrated CO2, H2CO3 and HCO3−.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research