Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Zero air pollution and zero carbon from all energy at low cost and without blackouts in variable weather throughout the U.S. with 100% wind-water-solar and storage

Authors: Mark Z. Jacobson; Anna-Katharina von Krauland; Stephen J. Coughlin; Frances C. Palmer; Miles M. Smith;

Zero air pollution and zero carbon from all energy at low cost and without blackouts in variable weather throughout the U.S. with 100% wind-water-solar and storage

Abstract

Abstract This study analyzes 2050–2051 grid stability in the 50 U S. states and District of Columbia after their all-sector (electricity, transportation, buildings, industry) energy is transitioned to 100% clean, renewable Wind-Water-Solar (WWS) electricity and heat plus storage and demand response (thus to zero air pollution and carbon). Stability is analyzed in five regions; six isolated states (Texas, California, Florida, New York, Alaska, Hawaii); Texas interconnected with the Midwest, and the contiguous U.S. No blackouts occur, including during summer in California or winter in Texas. No batteries with over 4-h storage are needed. Concatenating 4-h batteries provides long-duration storage. Whereas transitioning more than doubles electricity use, it reduces total end-use energy demand by ∼57% versus business-as-usual (BAU), contributing to the 63 (43–79)% and 86 (77–90)% lower annual private and social (private + health + climate) energy costs, respectively, than BAU. Costs per unit energy in California, New York, and Texas are 11%, 21%, and 27% lower, respectively, and in Florida are 1.5% higher, when these states are interconnected regionally than islanded. Transitioning may create ∼4.7 million more permanent jobs than lost and requires only ∼0.29% and 0.55% of new U.S. land for footprint and spacing, respectively, less than the 1.3% occupied by the fossil industry today.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 1%
Top 10%
Top 1%
bronze