Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable Energy
Article . 2023 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wave energy conversion energizing offshore aquaculture: Prospects along the Portuguese coastline

Authors: D. Clemente; P. Rosa-Santos; T. Ferradosa; F. Taveira-Pinto;

Wave energy conversion energizing offshore aquaculture: Prospects along the Portuguese coastline

Abstract

This paper seeks to identify promising sites and technologies, in Portugal, for co-located wave energy conversion and offshore aquaculture, whilst providing benchmark implementation references and guidelines to researchers. Accordingly, two case study sites are considered for deployment of five wave energy devices and up to six aquaculture species. A thorough analysis in terms of power ratios, efficiency, redundancy, species viability, device survivability and costs is performed, seeking to find viable co-located solutions. It is found that the Wave Dragon device yields the most promising energy demand coverage and energy output (5 226 to 6 817 MWh/ year). Nevertheless, it may require rescaling towards optimal operation, while the OCECO 4 excels in terms of capacity factor (0.24-0.29) and default adaptation to the deployment sites. The WaveRoller (R) has the lowest single-unit cost (125 euro/MWh) but requires up to nine units to cover all the energy demand targets. Larger wave farms are required for the BBDB and AquaBuOY, albeit with potentially greater economies of scale and single-unit redundancy. These sites also enable cultivation of most of the considered species, even under ideal condi-tions. Lastly, it is recommended that the devices enter survivability mode at a significant wave height threshold of 5.5 m.

Country
Portugal
Keywords

Ciências Tecnológicas, Ciências da engenharia e tecnologias, Ciências da engenharia e tecnologias, Engineering and technology, Technological sciences, Engineering and technology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
hybrid