
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Experimental uncertainty analysis of monopile scour protection stability tests

Hydraulic experiments using physical scale models of monopile scour protections typically have high ex-perimental uncertainties and data scattering. These uncertainties may severely affect the accuracy of the experimental results and need to be analysed quantitatively. This paper presents a study on the quantification of experimental uncertainties in monopile scour protection damage tests following the Guide to the expression of Uncertainty in Measurement (GUM) (ISO, 2008). The uncertainty analysis is performed using the three-dimensional damage number S3D and the widely applied STAB number. Through the analysis of the S3D number from individual test and repeated tests, it is found that the uncertainty analysis method for an individual test can be efficiently applied to predict the experimental uncertainty. The wave peak period and the current velocity are identified as the two major sources of uncertainties for the S3D number. The flow turbulence and correlations between input parameters can be neglected when estimating the uncertainty. The uncertainty analysis of the STAB number shows that the experimental uncertainty due to measurement can be up to 5% to 7% of the obtained STAB result. This uncertainty range is wide in comparison with the narrow margin of a dynamic scour protection design in DNV's recent recommended practice (DNV-RP-0618). The uncertainty of the STAB number is more affected by the armour stone density, wave peak period and significant wave height.
- Ghent University Belgium
- Universidade Lusófona do Porto Portugal
- Universidade do Porto Portugal
- CENTRO INTERDISCIPLINAR DE INVESTIGACAO MARINHA E AMBIENTAL Portugal
Ciências Tecnológicas, Ciências da engenharia e tecnologias, Ciências da engenharia e tecnologias, Engineering and technology, Technological sciences, Engineering and technology
Ciências Tecnológicas, Ciências da engenharia e tecnologias, Ciências da engenharia e tecnologias, Engineering and technology, Technological sciences, Engineering and technology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
