
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Measurements of solar energy absorption in a solar collector using carbon nanofluids

handle: 11577/3536250
To overcome the limitations of conventional solar thermal collectors (high conductive and convective thermal resistances between the absorber and the fluid), a promising technology is represented by direct absorption solar collectors working with nanofluids, where the incoming solar irradiance is absorbed directly within the volume of fluid. The main issue hindering the diffusion of such technology is related to its reliability, since nanofluids can lose their chemical stability due to nanoparticles sedimentation. Thus, the present work aims at investigating the stability and absorption capability of two nanofluids made of Single-Wall-Carbon-NanoHorns in a volumetric solar receiver. The present investigation covers the study of material compatibility, the laboratory measurements of nanofluid absorbance and the field simultaneous measurement of thermal and optical efficiency. Since the final performance of direct absorption solar collectors strongly depends on the nanofluid stability, the double efficiency measurement allows to better verify any possible instability effect. Furthermore, field measurements during nanofluid circulation are rare in the literature. The efficiency of the volumetric solar collector is between 88 % and 92 % at null reduced temperature difference. Finally, tests are performed at high flow rate leading to an evident performance degradation, due to nanoparticles deposition, that can be reversed with sonication.
- Delft University of Technology Netherlands
- University of Padua Italy
Carbon nanofluids; DASC; Nanofluids; Solar collector; Thermal efficiency; Volumetric solar collector
Carbon nanofluids; DASC; Nanofluids; Solar collector; Thermal efficiency; Volumetric solar collector
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
