Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ İstanbul Medipol Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analyzing energy transition for industry 4.0-driven hybrid energy system selection with advanced neural network-used multi-criteria decision-making technique

Authors: Peide Liu; Serkan Eti; Serhat Yüksel; Hasan Dinçer; Yaşar Gökalp; Edanur Ergün; Ahmet Faruk Aysan;

Analyzing energy transition for industry 4.0-driven hybrid energy system selection with advanced neural network-used multi-criteria decision-making technique

Abstract

This study aims to select the appropriate renewable energy alternatives for the efficiency of hybrid energy systems to increase energy transition performance. For this purpose, a novel neural network (NN)-based fuzzy decision-making model is constructed that has three different stages. In the first stage, NN-based fuzzy decision matrix is created. Secondly, 6 different variables based on industry 4.0 are weighted with the sine trigonometric Pythagorean fuzzy entropy technique. Additionally, another calculation has been implemented with criteria importance through intercriteria correlation (CRITIC) to identify the consistency of the results. Furthermore, in the third stage, considering 5 different renewable energy alternatives, 10 different combinations are identified for hybrid energy systems. The most effective alternatives are defined by the sine trigonometric Pythagorean fuzzy ranking technique by geometric mean of similarity ratio to optimal solution (RATGOS) method. Moreover, to test the validity of these results, another analysis is conducted using the additive ratio assessment (ARAS) technique. The main contribution of the study is that the optimal renewable energy combination required for an efficient hybrid energy system is determined by performing a priority analysis between the variables. This situation has a significant guiding feature for investors. Similarly, the development of the RATGOS technique both increases the methodological originality of the study and enables more accurate alternative ranking. It is identified that the results of all methods are similar. Therefore, this situation gives information about the coherency and validity of the findings. It is concluded that the most important criterion is real-time capability. It is also denoted that the best combination for hybrid energy systems is Solar-Wind.

Country
Turkey
Related Organizations
Keywords

Hybrid Energy Projects, Fuzzy Logic, Effective Resource Policies, Decision-Making Models, Renewable Energy Investments

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
Related to Research communities
Energy Research