Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable Energy
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Power modeling of degraded PV systems: Case studies using a dynamically updated physical model (PV-Pro)

Authors: Baojie Li; Xin Chen; Anubhav Jain;

Power modeling of degraded PV systems: Case studies using a dynamically updated physical model (PV-Pro)

Abstract

Power modeling, widely applied for health monitoring and power prediction, is crucial for the efficiency and reliability of Photovoltaic (PV) systems. The most common approach for power modeling uses a physical equivalent circuit model, with the core challenge being the estimation of model parameters. Traditional parameter estimation either relies on datasheet information, which does not reflect the system's current health status, especially for degraded PV systems, or requires additional I-V characterization, which is generally unavailable for large-scale PV systems. Thus, we build upon our previously developed tool, PV-Pro (originally proposed for degradation analysis), to enhance its application for power modeling of degraded PV systems. PV-Pro extracts model parameters from production data without requiring I-V characterization. This dynamic model, periodically updated, can closely capture the actual degradation status, enabling precise power modeling. PV-Pro is compared with popular power modeling techniques, including persistence, nominal physical, and various machine learning models. The results indicate that PV-Pro achieves outstanding power modeling performance, with an average nMAE of 1.4 % across four field-degraded PV systems, reducing error by 17.6 % compared to the best alternative technique. Furthermore, PV-Pro demonstrates robustness across different seasons and severities of degradation. The tool is available as a Python package at https://github.com/DuraMAT/pvpro.

Country
United States
Related Organizations
Keywords

Energy, Mechanical Engineering, Power modeling, 621, Physical model, Engineering, Power prediction, Networking and Information Technology R&D (NITRD), Affordable and Clean Energy, Machine learning, Health monitoring, Interdisciplinary Engineering, Electronics, Sensors and Digital Hardware, Electrical and Electronic Engineering, Photovoltaic, Electrical Engineering, PV system

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
hybrid