Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

From diesel reliance to sustainable power in Iraq: Optimized hybrid microgrid solutions

Authors: Kawakib Arar Tahir; Juanjo Nieto; Carmen Díaz-López; Javier Ordóñez;

From diesel reliance to sustainable power in Iraq: Optimized hybrid microgrid solutions

Abstract

This study investigates Iraq’s challenging electricity landscape, exacerbated by the cumulative impacts of four wars, leading to daily power outages. The reliance on neighborhood diesel generators (NDG) as a temporary fix is critically assessed, with a strong expert consensus via the Delphi method advocating for a transition to solar photovoltaic (SPV) panels. The Delphi survey involved 20 experts, with 85% agreeing on the necessity of this transition, and high consensus (90% or higher) achieved on key questions regarding the inadequacy of NDG and the suitability of SPV as a replacement. The scarcity of local load data prompted the adaptation of Spain’s load profiles to Iraq using the innovative Rosetta transform, identifying the optimal number of SPV panels needed for low, base, and high consumption scenarios as 7, 9, and 11 panels, respectively. In a first approach to the viability of such an SPV installation, it is deduced that the minimum prices per kWh should be between $0.106 and $0.078, depending on the scenario, for it to be viable, well above the current prices in Iraq. A deeper analysis was then performed to evaluate Hybrid Microgrid Systems (HMGS) integrating SPVs, batteries and gasoline generators, both off-grid and grid-connected, and taking into account NDG-related savings. This analysis evidenced the viability of a grid-connected HMGS, leveraging SPV and battery storage, as the most economically viable solution, achieving payback periods up to 3.6 years in the best case. This research underscores the need for a policy shift towards sustainable energy solutions in Iraq and similar contexts, highlighting the technical and economic advantages of adopting clean, renewable energy systems over traditional NDG, and paving the way for a sustainable energy future.

This work is partially supported by Grant C-ING-288-UGR23 funded by Consejería de Universidad, Investigación e Innovación and by ERDF Andalusia Program 2021–2027

Country
Spain
Related Organizations
Keywords

Optimization, Power outages, Delphi method, Hybrid microgrid system, Feasibility analysis, Rosetta transform

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
Related to Research communities
Energy Research