Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable Energy
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental investigation of vortex rope mitigation in a 10 MW axial turbine

Authors: L.R. Joel Sundstrom; Shahab Shiraghaee; Pontus P. Jonsson; Michel J. Cervantes;

Experimental investigation of vortex rope mitigation in a 10 MW axial turbine

Abstract

Increased utilization of hydraulic turbines as a regulatory tool for electrical grid stabilization forces some turbines to operate away from their design point, thus increasing wear and tear. In here, rotating vortex rope (RVR) mitigation by means of radial insertion of cylindrical rods in the draft tube is investigated experimentally on a 10 MW Kaplan turbine operating as a propeller. Pressure measurements in the draft tube, runner chamber and spiral casing, along with strain and acceleration measurements on the turbine shaft are performed to scrutinize the effectiveness of the mitigation system. Three part-load operating points are investigated, corresponding to 83%, 72%, and 68% of the guide vane servo stroke relative to the best-efficiency point opening. It is shown that the mitigation system dampens the harmful effects of the vortex rope at all operating points, especially at lower part-load conditions. Specifically, the pressure amplitude of the RVR fundamental mode inside the runner chamber reduces by 84%, 63%, and 73% at the three investigated operating points, relative to the amplitudes without mitigation. On the turbine shaft, the fundamental mode of the axial thrust oscillations at the RVR frequency reduces by 65%, 83%, and 95%. It is shown that the mitigation does not come with a high cost on the turbine time-averaged efficiency over the course of the measurements, the penalty being 2%, 2.5%, and 3.2% at the protrusion length where optimal mitigation is achieved at each operating point. For high-head machines, the penalty is expected to be lower since the relative importance of the draft tube diminishes for higher heads. Validerad;2024;Nivå 2;2024-12-09 (signyg);Fulltext license: CC BY

Country
Sweden
Related Organizations
Keywords

Energiteknik, Off-design operation, Vortex rope mitigation, Rotating vortex rope, Turbine efficiency, Energy Engineering, Fluid Mechanics, Hydropower, Strömningsmekanik

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid
Funded by
Related to Research communities
Energy Research