Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hourly electrical load estimates in a 100 % renewable scenario in Italy

Authors: Buzzi F.; Bischi A.; Gabbrielli R.; Desideri U.;

Hourly electrical load estimates in a 100 % renewable scenario in Italy

Abstract

The study of the impact of the zero-emissions scenarios of several countries on the electrical demand is relevant to analyze the feasibility of the sustainable energy transition. This paper presents a structured method to assess the effect of the 100 % renewable scenario on the hourly electrical load profile of a country taking Italy as reference case study. The hourly discretization is a fundamental approach to evaluate the contribution of the intermittent renewable sources during the day and the proposed methodology can be easily applied to several countries' scenarios. Numerous decarbonization scenarios consider the adoption of electricity in several sectors. Consequently, the primary energy reduction (40 % in the scenario considered) is usually accompanied by a relevant increase of the annual electricity demand (94%–124 %). In this paper, each sector's contribution is estimated separately, and the results show demand peaks above 100 GW and a baseload above 50 GW, which is more than double that of recent years. Electricity consumption is higher in the colder months and hydrogen and synthetic fuel production impacts significantly on the total electricity demand (26%–32 %). The results of this work will be used to verify the feasibility of net zero scenarios with hourly discretization in further research analysis.

Country
Italy
Related Organizations
Keywords

100 % renewable scenario; Electrical load; Electrification; Energy consumption; Zero emissions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research