
Found an issue? Give us feedback
Resources Conservation and Recycling
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Embodied energy and CO2 in UK dimension stone

Authors: S. Goodsir; N. Crishna; Phillip Frank Gower Banfill;
Embodied energy and CO2 in UK dimension stone
Abstract
Abstract A process based life cycle assessment of dimension stone production in the UK has been carried out according to PAS 2050. From a survey of eight production operations, on a cradle-to-site basis for UK destinations the carbon footprint of sandstone is 77 kgCO2e/tonne, that of granite is 107 kgCO2e/tonne and that of slate is 251 kgCO2e/tonne. These values are considerably higher for stone imported from abroad due to the impact of transport. Reducing the reliance on imported stone will contribute to emissions reduction targets as well as furthering the goals of sustainable development.
Related Organizations
- Heriot-Watt University United Kingdom
- Heriot-Watt University United Kingdom

Found an issue? Give us feedback