Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Resources Conservati...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Resources Conservation and Recycling
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Towards a low carbon transition of urban public transport in megacities: A case study of Shenzhen, China

A case study of Shenzhen, China
Authors: Dan Dong; Mingwei Hu; Gang Wang; Biqin Dong; Qingbin Song; Gang Liu; Ruichang Mao; +4 Authors

Towards a low carbon transition of urban public transport in megacities: A case study of Shenzhen, China

Abstract

Abstract The urgent need to develop low carbon urban transport systems particularly in Asian megacities is facing the significant challenge of growing motorization following population increase and economic development. Sustainable urban public transport (UPT) plays a crucial role to fulfil the ambitious targets on carbon emission reduction. In this study, life cycle assessment was employed to quantify the environmental impacts (measured by carbon emissions) of UPT systems (including bus and subway) in Shenzhen, a leading megacity in South China, and then to examine corresponding carbon intensity reduction potentials. Results showed that the total carbon emissions from UPT in Shenzhen have increased rapidly from 0.70 Mt in 2005 to 1.74 Mt in 2015 due to the fast growth of the volume of transport turnover. However, current low-carbon UPT mode has only reduced 0.21 Mt CO2 e (cumulative value, from 2005 to 2015), and thus could not contribute proportionally to the city’s overall emission reduction target. Three advanced scenarios (from conservative to optimistic) were further simulated to estimate carbon emissions and their intensity reduction potentials over the next 15 years (2016–2030). Compared to the business-as-usual scenario, all these three low-carbon transition scenarios could significantly mitigate the rapid growth of carbon emissions and consequently help achieve Shenzhen’s carbon intensity reduction goal by 2030 (60%, compared to 2005 level). These findings could not only inform evidence-based policy making to facilitate the low-carbon transition of the urban transport sector in Shenzhen, but also shed light on sustainable urban transition in other megacities.

Country
Denmark
Keywords

Subway, Urban public transport, Shenzhen, Life cycle assessment, Carbon emission intensity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 1%
Top 10%
Top 10%