Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Policyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Policy
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.5445/ir/...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

From virtuous to vicious cycles – towards a life cycle model of technology deployment policies

Authors: Dehler-Holland, Joris;

From virtuous to vicious cycles – towards a life cycle model of technology deployment policies

Abstract

The management of sustainability transitions often includes action to accelerate technological change. Deployment policies are essential measures to increase the adoption of technologies and spur technological development. However, processes of technological development often follow non-linear pathways, and aligning policy and technological development is challenging. This paper links technological innovation systems (TIS) and their dynamics to the policy feedback framework based on the notion that policies shape future politics. Most significantly, the explicit consideration of TIS processes and progress allows for a more nuanced view of how policy effects turn into feedback and for assessing the co-evolution of TIS and policy over time. This framework is applied to study the case of the German Renewable Energy Act (EEG, 1999–2017). The case study provides evidence that the virtuous cycles of rapid TIS development also increase the odds of growing negative feedback based on rising policy costs, competition within sectors, and increasing technology side effects, opening up windows of opportunity for policy change. Based on these observations, this paper proposes an ideal-typical technology deployment policy life cycle model that describes how TIS, the focal policy, and their context co-evolve in a reciprocal process for the case of the EEG. The discussion sheds light on how deployment policies trigger search processes within the TIS that may encroach national borders to satisfy technology demand. Such search processes fuel political optimism. Rising policy costs and side effects, however, produce policy feedback limiting political leverage. The proposition of a model of how the linkages between policy and technology unfold over time contributes to understanding the timing of policies within sustainability transitions.

Keywords

Policy feedback, Technology deployment policy, Renewable energy, Sustainability transitions, Innovation systems, Technology life cycle

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research