Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cranfield University...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Reliability Engineering & System Safety
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cranfield CERES
Article . 2020
License: CC BY NC ND
Data sources: Cranfield CERES
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Reliability Engineering & System Safety
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bayesian Network Modelling for the Wind Energy Industry: An Overview

Authors: Tosin Adedipe; Mahmood Shafiee; Enrico Zio; Enrico Zio;

Bayesian Network Modelling for the Wind Energy Industry: An Overview

Abstract

Wind energy farms are moving into deeper and more remote waters to benefit from availability of more space for the installation of wind turbines as well as higher wind speed for the production of electricity. Wind farm asset managers must ensure availability of adequate power supply as well as reliability of wind turbines throughout their lifetime. The environmental conditions in deep waters often change very rapidly, and therefore the performance metrics used in different life cycle phases of a wind energy project will need to be updated on a frequent basis so as to ensure that the wind energy systems operate at the highest reliability. For this reason, there is a crucial need for the wind energy industry to adopt advanced computational tools/techniques that are capable of modelling the risk scenarios in near real-time as well as providing a prompt response to any emergency situation. Bayesian network (BN) is a popular probabilistic method that can be used for system reliability modelling and decision-making under uncertainty. This paper provides a systematic review and evaluation of existing research on the use of BN models in the wind energy sector. To conduct this literature review, all relevant databases from inception to date were searched, and a total of 70 sources (including journal publications, conference proceedings, PhD dissertations, industry reports, best practice documents and software user guides) which met the inclusion criteria were identified. Our review findings reveal that the applications of BNs in the wind energy industry are quite diverse, ranging from wind power and weather forecasting to risk management, fault diagnosis and prognosis, structural analysis, reliability assessment, and maintenance planning and updating. Furthermore, a number of case studies are presented to illustrate the applicability of BNs in practice. Although the paper details information applicable to the wind energy industry, the knowledge gained can be transferred to many other sectors.

Countries
France, Italy, France, United Kingdom
Keywords

690, Operation and maintenance (O&M), Operation and maintenance (O&M), [SHS.GEST-RISQ]Humanities and Social Sciences/Crisis and risk management, VM, Probabilistic methods, Structural analysis, Reliability, TA116, TA403, TJ, [SHS.GEST-RISQ]Humanities and Social Sciences/domain_shs.gest-risq, Bayesian network (BN), Fault diagnosis and prognosis, Wind energy, Risk assessment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    98
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
98
Top 1%
Top 10%
Top 1%
Green
hybrid