Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Results in Control a...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Results in Control and Optimization
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Frequency regulation of two-area thermal and photovoltaic power system via flood algorithm

Authors: Serdar Ekinci; Davut Izci; Cebrail Turkeri; Aseel Smerat; Absalom E. Ezugwu; Laith Abualigah;

Frequency regulation of two-area thermal and photovoltaic power system via flood algorithm

Abstract

Frequency regulation is critical for maintaining balance between supply and demand in interconnected power systems, ensuring grid stability and preventing disruptions. This becomes increasingly important with the integration of renewable energy sources, such as photovoltaic (PV) units, which introduce variability and complexity into power systems. In this regards, this study presents a novel approach to frequency regulation in a two-area interconnected power system comprising thermal and PV units. A Proportional-Integral (PI) controller is designed, and its parameters are optimally tuned using the flood algorithm (FLA). The innovative use of the FLA ensures robust performance and efficient frequency stabilization under varying operational conditions. The implementation details of the FLA-tuned PI controller are provided, and its performance is rigorously compared with PI controllers tuned using several state-of-the-art optimization techniques. These include sea horse optimization, salp swarm algorithm, whale optimization algorithm, shuffled frog-leaping algorithm, and firefly algorithm. The comparative analysis is based on numerical results of performance metrics, demonstrating the robustness and effectiveness of each tuning method. Performance indices, including maximum overshoot, settling time and steady-state error are used to evaluate the robustness of the designed PI controllers. The frequency variations for the two-area thermal and PV power system are analyzed post-optimization, highlighting the superiority of the FLA-based PI controller in maintaining system stability under various operational conditions. The proposed FLA-based PI controller achieved a reduction in maximum overshoot by 28.3 %, a decrease in settling time by 23.4 %, and an improvement in steady-state error by 15.7 % compared to the next best-performing optimization method. These results demonstrate the significant advantages of the FLA in optimizing frequency regulation.

Keywords

Renewable energy, PI controller design, T57-57.97, Applied mathematics. Quantitative methods, Load frequency control, Meta-heuristic optimization, Flood algorithm

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research