Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Results in Engineeri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Results in Engineering
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Results in Engineering
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Theoretical study of an NH3–H2O absorption chiller powered by a linear Fresnel system modelled by combining ray tracing and CFD

Authors: Fatimata Dione; Ababacar Thiam; ElHadji I. Cisse; Djicknoum Diouf; Amadou Seidou Maiga;

Theoretical study of an NH3–H2O absorption chiller powered by a linear Fresnel system modelled by combining ray tracing and CFD

Abstract

This paper analyses the performance of a NH3–H2O absorption machine powered with a linear Fresnel reflector. , The various components of the absorption machine and the linear Fresnel reflector were dimensioned for a power of 10 kW. A numerical model combining Monte Carlo ray tracing and Computational Fluid Dynamics was developed to evaluate the outlet temperature of the linear Fresnel reflector. The outlet temperature is used as input data for the simulation of the thermodynamic model of the NH3–H2O absorption machine using the commercial software Engineering Equation Solver. The results showed that the linear Fresnel reflector consists of 30 reflectors with a length of 10 m and a wide of 0.2 m each, 5 absorber tubes with a height of 4 m each and 1 trapezoidal cavity with a length of 10 m and a height of 4.065 m. A hot source temperature of 169.24 °C was recorded when the coefficient of performance reaches 0.510.

Keywords

Technology, Linear Fresnel reflector, T, Monte Carlo ray tracing, Computational fluid dynamics, Absorption chiller, Ammonia-water

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold