
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Metachronal wave analysis for non-Newtonian fluid under thermophoresis and Brownian motion effects

This paper analyse the mathematical model of ciliary motion in an annulus. The effect of convective heat transfer and nanoparticle are taken into account. The governing equations of Jeffrey six-constant fluid along with heat and nanoparticle are modelled and then simplified by using long wavelength and low Reynolds number assumptions. The reduced equations are solved with the help of homotopy perturbation method. The obtained expressions for the velocity, temperature and nanoparticles concentration profiles are plotted and the impact of various physical parameters are investigated for different peristaltic waves. Streamlines has also been plotted at the last part of the paper. Keywords: Non-Newtonian fluid, Peristaltic flow, Cilia effect, Analytical solution
- Capital University United States
- CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY Pakistan
- CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY Pakistan
- Quaid-i-Azam University Pakistan
- Capital University United States
Physics, QC1-999
Physics, QC1-999
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
