
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry

handle: 10871/21978
AbstractCovering 40% of the terrestrial surface, dryland ecosystems characteristically have distinct vegetation structures that are strongly linked to their function. Existing survey approaches cannot provide sufficiently fine-resolution data at landscape-level extents to quantify this structure appropriately. Using a small, unpiloted aerial system (UAS) to acquire aerial photographs and processing theses using structure-from-motion (SfM) photogrammetry, three-dimensional models were produced describing the vegetation structure of semi-arid ecosystems at seven sites across a grass–to shrub transition zone. This approach yielded ultra-fine (<1cm2) spatial resolution canopy height models over landscape-levels (10ha), which resolved individual grass tussocks just a few cm3 in volume. Canopy height cumulative distributions for each site illustrated ecologically-significant differences in ecosystem structure. Strong coefficients of determination (r2 from 0.64 to 0.95) supported prediction of above-ground biomass from canopy volume. Canopy volumes, above-ground biomass and carbon stocks were shown to be sensitive to spatial changes in the structure of vegetation communities. The grain of data produced and sensitivity of this approach is invaluable to capture even subtle differences in the structure (and therefore function) of these heterogeneous ecosystems subject to rapid environmental change. The results demonstrate how products from inexpensive UAS coupled with SfM photogrammetry can produce ultra-fine grain biophysical data products, which have the potential to revolutionise scientific understanding of ecology in ecosystems with either spatially or temporally discontinuous canopy cover.
- University of Exeter United Kingdom
Vegetation, 550, UAV, Canopy height model, Soil Science, Geology, Grassland, 630, Shrubland, Semi-arid, Biophysical, SfM, Biomass, UAS, Computers in Earth Sciences, Rangeland
Vegetation, 550, UAV, Canopy height model, Soil Science, Geology, Grassland, 630, Shrubland, Semi-arid, Biophysical, SfM, Biomass, UAS, Computers in Earth Sciences, Rangeland
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).300 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
