Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Agritrop
Article . 2020
Data sources: Agritrop
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Remote Sensing of Environment
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A simulation method to infer tree allometry and forest structure from airborne laser scanning and forest inventories

Authors: Fischer, Fabian Jörg; Fischer, Fabian,; Labrière, Nicolas; Vincent, Grégoire; Hérault, Bruno; Alonso, Alfonso; Memiaghe, Hervé; +4 Authors

A simulation method to infer tree allometry and forest structure from airborne laser scanning and forest inventories

Abstract

Abstract Tropical forests are characterized by large carbon stocks and high biodiversity, but they are increasingly threatened by human activities. Since structure strongly influences the functioning and resilience of forest communities and ecosystems, it is important to quantify it at fine spatial scales. Here, we propose a new simulation-based approach, the “Canopy Constructor”, with which we quantified forest structure and biomass at two tropical forest sites, one in French Guiana, the other in Gabon. In a first step, the Canopy Constructor combines field inventories and airborne lidar scans to create virtual 3D representations of forest canopies that best fit the data. From those, it infers the forests' structure, including crown packing densities and allometric scaling relationships between tree dimensions. In a second step, the results of the first step are extrapolated to create virtual tree inventories over the whole lidar-scanned area. Across the French Guiana and Gabon plots, we reconstructed empirical canopies with a mean absolute error of 3.98 m [95% credibility interval: 3.02, 4.98], or 14.4%, and a small upwards bias of 0.66 m [−0.41, 1.8], or 2.7%. Height-stem diameter allometries were inferred with more precision than crown-stem diameter allometries, with generally larger heights at the Amazonian than the African site, but similar crown-stem diameter allometries. Plot-based aboveground biomass was inferred to be larger in French Guiana with 400.8 t ha−1 [366.2–437.9], compared to 302.2 t ha−1 in Gabon [267.8–336.8] and decreased to 299.8 t ha−1 [275.9–333.9] and 251.8 t ha−1 [206.7–291.7] at the landscape scale, respectively. Predictive accuracy of the extrapolation procedure had an RMSE of 53.7 t ha−1 (14.9%) at the 1 ha scale and 87.6 t ha−1 (24.2%) at the 0.25 ha scale, with a bias of −17.1 t ha−1 (−4.7%). This accuracy was similar to regression-based approaches, but the Canopy Constructor improved the representation of natural heterogeneity considerably, with its range of biomass estimates larger by 54% than regression-based estimates. The Canopy Constructor is a comprehensive inference procedure that provides fine-scale and individual-based reconstructions even in dense tropical forests. It may thus prove vital in the assessment and monitoring of those forests, and has the potential for a wider applicability, for example in the exploration of ecological and physiological relationships in space or the initialisation and calibration of forest growth models.

Country
France
Keywords

tropical forest, [SDE.MCG]Environmental Sciences/Global Changes, Laser, individual-based modeling, forêt tropicale, 333, Allométrie, biomasse aérienne des arbres, K01 - Foresterie - Considérations générales, allometry, vegetation structure, canopy space filling, biomass, U10 - Méthodes mathématiques et statistiques, Inventaire forestier, Modèle de simulation, évaluation des ressources forestières, Structure du peuplement, airborne lidar, Relevé aérien, U40 - Méthodes de relevé, approximate bayesian computation, agrovoc: agrovoc:c_26026, agrovoc: agrovoc:c_3093, agrovoc: agrovoc:c_24242, agrovoc: agrovoc:c_24962, agrovoc: agrovoc:c_1374155312641, agrovoc: agrovoc:c_34911, agrovoc: agrovoc:c_156, agrovoc: agrovoc:c_24174, agrovoc: agrovoc:c_3161, agrovoc: agrovoc:c_24904, agrovoc: agrovoc:c_1373987680230

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
Green
bronze
Related to Research communities
Energy Research