Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Short-term prediction of household electricity consumption: Assessing weather sensitivity in a Mediterranean area

Authors: BECCALI, Marco; CELLURA, Maurizio; LO BRANO, Valerio; MARVUGLIA, Antonino;

Short-term prediction of household electricity consumption: Assessing weather sensitivity in a Mediterranean area

Abstract

Abstract Urban microclimatic variations, along with a rapid reduction of unit cost of air-conditioning (AC) equipments, can be addressed as some of the main causes of the raising residential energy demand in the more developed countries. This paper presents a forecasting model based on an Elman artificial neural network (ANN) for the short-time prediction of the household electricity consumption related to a suburban area. Due to the lack of information about the real penetration of electric appliances in the investigated area and their utilization profiles it was not possible to implement a statistical model to define the weather and climate sensitivities of appliance energy consumption. For this reason an ANN model was used to predict the household electric energy demand of the investigated area and to evaluate the influence of the AC equipments on the overall consumption. The data used to train the network were recorded in Palermo (Italy) and include electric current intensity and weather variables as temperature, relative humidity, global solar radiation, atmospheric pressure and wind speed values between June 1, 2002 and September 10, 2003. The work pointed out the importance of a thermal discomfort index, the Humidex index , for a simple but effective evaluation of the conditions affecting the occupant behaviour and thus influencing the household electricity consumption related to the use of heating, ventilation and air conditioning (HVAC) appliances. The prediction performances of the model are satisfying and bear out the ability of ANNs to manage incomplete and noisy data, solve nonlinear problems and learn complex underlying relationships between input and output patterns.

Country
Italy
Related Organizations
Keywords

Short-term prediction, consumption,weather sensitivity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    111
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
111
Top 1%
Top 1%
Top 10%