Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Life-cycle studies of biodiesel in Europe: A review addressing the variability of results and modeling issues

Authors: João Malça; Fausto Freire;

Life-cycle studies of biodiesel in Europe: A review addressing the variability of results and modeling issues

Abstract

Renewable energy sources, and particularly biofuels, are being promoted as possible solutions to address global warming and the depletion of petroleum resources. Nevertheless, significant disagreement and controversies exist regarding the actual benefits of biofuels displacing fossil fuels, as shown by a large number of life-cycle studies that have varying and sometimes contradictory conclusions. This article presents a comprehensive review of life-cycle studies of biodiesel in Europe. Studies have been compared in terms of nonrenewable primary energy requirement and GHG intensity of biodiesel. Recently published studies negate the definite and deterministic advantages for biodiesel presented in former studies. A high variability of results, particularly for biodiesel GHG intensity, with emissions ranging from 15 to 170 gCO2eq MJf−1 has been observed. A detailed assessment of relevant aspects, including major assumptions, modeling choices and results, has been performed. The main causes for this high variability have been investigated, with emphasis on modeling choices. Key issues found are treatment of co-product and land use modeling, including high uncertainty associated with N2O and carbon emissions from cultivated soil. Furthermore, a direct correlation between how soil emissions were modeled and increasing values for calculated GHG emission has been found. A robust biodiesel life-cycle modeling has been implemented and the main sources of uncertainty have been investigated to show how uncertainty can be addressed to improve the transparency and reliability of results. Recommendations for further research work concerning the improvement of biofuel life cycle modeling are also presented.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    111
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
111
Top 10%
Top 10%
Top 1%