Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The effect of reactor design on the sustainability of grass biomethane

Authors: Abdul-Sattar Nizami; Jerry D. Murphy; Anoop Singh; Nicholas E. Korres;

The effect of reactor design on the sustainability of grass biomethane

Abstract

Grass biomethane is a sustainable transport biofuel. It can meet the 60% greenhouse gas saving requirements (as compared to the replaced fossil fuel) specified in the EU Renewable Energy Directive, if allowance is made for carbon sequestration, green electricity is used and the vehicle is optimized for gaseous biomethane. The issue in this paper is the effect of the digester type on the overall emissions savings. Examining three digestion configurations; dry continuous (DCAD), wet continuous (WCAD), and a two phase system (SLBR-UASB), it was found that the reactor type can result in a variation of 15% in emissions savings. The system that as modeled produced most biogas, and fuelled a vehicle most distance, the two phase system (SLBR-UASB), was the least sustainable due to biogas losses in the dry batch step. The system as modeled which produced the least biogas (DCAD) was the most sustainable as the parasitic demands on the system were least. Optimal reactor design for sustainability criteria should maximize biogas production, while minimizing biogas losses and parasitic demands.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%