
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A review on exergy analysis of biomass based fuels

handle: 1959.3/452259
Renewable energy sources can be a good substitute of the fossil fuels which are being terminated fast. Nowadays biomass and biofuels are considered because of their environment friendly characteristics and their ability of supplying much more energy. An alternative means to select the most efficient and convenient biomass, is exergy analysis. The present paper has reviewed the existent surveys on the exergy analysis of different kind of biomass included the woody biomass, herbaceous and agricultural biomass, aquatic biomass, contaminated biomass and industrial biomass. The most common thermochemical processes are investigated and the efficiency of the different process and various kinds of biomass are determined.
- University of Malaya Malaysia
- Universiti Tenaga Nasional Malaysia
- Swinburne University of Technology Australia
- Universiti Tenaga Nasional Malaysia
- Universiti Malaysia Terengganu Malaysia
TA Engineering (General). Civil engineering (General), TJ Mechanical engineering and machinery
TA Engineering (General). Civil engineering (General), TJ Mechanical engineering and machinery
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).133 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
