Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design recommendations for solar organic Rankine cycle (ORC)–powered reverse osmosis (RO) desalination

Authors: Agustín M. Delgado-Torres; Lourdes García-Rodríguez;

Design recommendations for solar organic Rankine cycle (ORC)–powered reverse osmosis (RO) desalination

Abstract

Abstract This paper deals with the design recommendations for solar reverse osmosis (RO) desalination based on solar organic Rankine cycles (SORC). This technology can be the most energy-efficient technology for seawater and brackish water desalination within the small to medium power output range (up to 500 kW) of the power cycle if the system is properly designed. However, theoretical studies, design proposals and experimental works are very scarce and only very few solar reverse osmosis systems driven by ORC has been either implemented or analysed in the past. In this paper, those systems are outlined and general design recommendations from previous detailed analysis already publish are given for future RO desalination system to be designed based on SORC. Useful information is given about the selection of the working fluid and boundary conditions of the ORC, operation temperature and configuration of the solar field, suited solar collector and thermal energy storage technology, etc. Recommendations are exemplified with well selected numerical cases based on recommended working fluids and solar cycle configuration with proper values of design point parameters. Recommendations given in this paper could be helpful in future initiatives regarding the research and development of this promising solar desalination technology.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    97
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
97
Top 1%
Top 10%
Top 10%