Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A review of maximum power point tracking algorithms for wind energy systems

Authors: Abdullah, M.A.; Yatim, A.H.M.; Tan, C.W.A.; Saidur, R.;

A review of maximum power point tracking algorithms for wind energy systems

Abstract

Abstract This paper reviews state of the art maximum power point tracking (MPPT) algorithms for wind energy systems. Due to the instantaneous changing nature of the wind, it is desirable to determine the one optimal generator speed that ensures maximum energy yield. Therefore, it is essential to include a controller that can track the maximum peak regardless of wind speed. The available MPPT algorithms can be classified as either with or without sensors, as well as according to the techniques used to locate the maximum peak. A comparison has been made between the performance of different MPPT algorithms on the basis of various speed responses and ability to achieve the maximum energy yield. Based on simulation results available in the literature, the optimal torque control (OTC) has been found to be the best MPPT method for wind energy systems due to its simplicity. On the other hand, the perturbation and observation (P&O) method is flexible and simple in implementation, but is less efficient and has difficulties determining the optimum step-size.

Country
Malaysia
Keywords

TA Engineering (General). Civil engineering (General), TJ Mechanical engineering and machinery

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    634
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
634
Top 0.1%
Top 0.1%
Top 1%