Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Managing electric power system transition in China

Authors: Jiangyan Liu; Zheng Hu; Zhongfu Yu; Ming Xu; Yan Xu; Jiahai Yuan; Zhaoguang Hu;

Managing electric power system transition in China

Abstract

Abstract This research studies the low carbon transition of the electric power sector in China using a multi-level perspective (MLP) of niches, socio-technical regime, and landscape, as well as literature on innovation systems. Three lines of thought on transition process are integrated in the paper to probe the possible transition pathways in China. A MLP analysis is presented to understand the current niches, regime, and landscape of China’s power sector. A brief analysis on the future macroscopic socio-economic transition in the process of industrialization, urbanization, and modernization of Chinese society and its implication on power landscape are depicted to prove the urgency and magnitude of transition in China and why systematic transition management is needed. Five transition pathways, namely reproduction, transformation, substitution, reconfiguration, de-alignment/re-alignment, and reconfiguration, with their possible technology options are presented. The paper goes further to propose an interactive framework for managing the transition to a low carbon energy system in China. Representative technology options are appraised by employing innovation theory to indicate the logic of policymaking within the framework. Institutional gaps in realizing the transition are also addressed. The work presented in the paper will be useful in informing policy-makers and other stakeholders and may provide references for power sector transition management in other countries.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%