
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Review of the T -history method to determine thermophysical properties of phase change materials (PCM)

handle: 10459.1/47870
Phase change materials (PCM) are able to store thermal energy when becoming liquid and to release it when solidifying. Latent heat storage has gained importance due the applications towards increasing energy efficiency in several systems. Thus, a correct and accurate thermal characterization of these materials should be achieved. Among all possible thermal analysis methods to determine PCM thermophysical properties, the T-history method presents certain advantages. The T-history method is known to be suitable to obtain fusion enthalpy, specific heat and thermal conductivity for large phase change materials samples. On the other hand, no experimental T-history equipment is commercially available yet. Therefore, the goal of this paper is moving towards a consensus. To achieve this goal, a collection of similar methods previous to T-history are exposed and different proposals based on improving the original T-history method are discussed and reviewed.
- University of Lleida Spain
- Canadian Real Estate Association Canada
- University of Lleida Spain
- University of Barcelona Spain
- Canadian Real Estate Association Canada
T-history method, Thermal analysis, Phase change materials
T-history method, Thermal analysis, Phase change materials
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).171 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
