
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Mixed integer programming of multi-objective security-constrained hydro/thermal unit commitment
This paper proposes a method for short term security-constrained unit commitment (SCUC) for hydro and thermal generation units. The SCUC problem is modeled as a multi-objective problem to concurrently minimize the ISO's cost as well as minimizing the emissions caused by thermal units. The non-linearity of valve loading effects is linearized in the presented problem. In order to model the SCUC problem more realistically, this paper considers the dynamic ramp rate of thermal units instead of the fixed rate. Moreover, multi-performance curves pertaining to hydro units are developed and the proposed SCUC problem includes the prohibited operating zones (POZs). Besides, the model of SCUC is transformed into mixed integer linear programming (MILP) instead of using mixed integer non-linear programming (MINLP) which has the capability to be solved efficiently using optimization software even for real size power systems. Pareto optimal solutions are generated by employing lexicographic optimization as well as hybrid augmented-weighted e-constraint technique. Furthermore, a Fuzzy decision maker is utilized in this paper to determine the most preferred solution among Pareto optimal solutions derived through solving the proposed multi-objective SCUC problem. Eventually, the proposed model is implemented on modified IEEE 118-bus system comprising 54 thermal units and 8 hydro units. The simulation results reveal that the solutions obtained from the proposed technique in comparison with other methods established recently are superior in terms of total cost and emission output.
- Islamic Azad University, Science and Research Branch Iran (Islamic Republic of)
- Islamic Azad University, Tehran Iran (Islamic Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).97 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
