Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhancement of biofuel production via microbial augmentation: The case of dark fermentative hydrogen

Authors: Nándor Nemestóthy; Katalin Bélafi-Bakó; Germán Buitrón; Kaiqin Xu; Takuro Kobayashi; Péter Bakonyi; Gopalakrishnan Kumar; +3 Authors

Enhancement of biofuel production via microbial augmentation: The case of dark fermentative hydrogen

Abstract

Abstract This review portrays the status and perspectives of bioaugmented hydrogen fermentation, an emerging strategy of process intensification. Firstly, the paper introduces the potentials and limitations of dark fermentative hydrogen production and describes the technologies available for its enhancement including bioaugmentation. The theoretical background and practical features of augmentation methods for biohydrogen generation are subsequently assessed and surveyed in details. Furthermore, a throughout evaluation of the recent and novel achievements reported in the concept of “augmented hydrogen fermentation” is given in association with (i) bioreactor start-up, (ii) utilization of solid wastes, wastewaters, (iii) the feasibility in continuous systems as well as in complementary – integrated – applications. The article is intended to provide an insight to the advancements made for realizing more viable biohydrogen formation via bioaugmentation and hence it might be encouraging for further studies in the field.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    112
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
112
Top 10%
Top 10%
Top 1%