
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Durability studies of solar reflectors: A review

Abstract Reflectors are a vital part of a concentrating solar thermal power plant. One of their most important characteristics is their durability, which entails the maintenance of their optical properties throughout their service lifetime, aimed at 10–30 years or more. The assessment of their optical durability involves the design of two types of aging tests, outdoor exposure testing under real ambient conditions and accelerated exposure testing in weathering chambers under simulated conditions. After exposure to different stress factors for certain periods of time, the optical performance of reflectors is evaluated mainly in terms of reflectance, but also regarding qualitative parameters such as their visual appearance and degradation patterns. The ultimate goal of a durability study is to conceive meaningful accelerated testing procedures that simulate real outdoor degradation in a short time and provide service lifetime estimates for a certain type of reflector at a specific site. To achieve this, more research on service lifetime prediction should be conducted and the standardization of accelerated testing procedures and reflectance evaluation methods should become widespread, to obtain comparable representative results. In this article, the most significant durability studies performed on the three main types of solar reflectors (glass-based, aluminum and silvered-polymer) and prospective approaches for improving future endeavors are discussed.
- University of Almería Spain
- University of Almería Spain
- German Aerospace Center Germany
Concentrating Solar power, accelerated exposure testing, solar reflector, Qualifizierung, outdoor exposure testing, durability
Concentrating Solar power, accelerated exposure testing, solar reflector, Qualifizierung, outdoor exposure testing, durability
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).88 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
