Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Advances in nuclear magnetic resonance (NMR) techniques for the investigation of clathrate hydrates

Authors: Jia-nan Zheng; Zheng Rong Chong; Praveen Linga; Yongchen Song; Mingjun Yang; Mingjun Yang;

Advances in nuclear magnetic resonance (NMR) techniques for the investigation of clathrate hydrates

Abstract

Abstract Over the years, clathrate hydrates have been investigated for its potential as an energy resource and other industrial applications. Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are two powerful NMR technologies for both molecular level and microscopic measurement, which have been applied in gas hydrate research to provide fundamental and useful information. 1H and 13C NMR spectroscopy are the most commonly applied method to study cage occupancies of guest species and crystal structures. MRI technique, on the other hand, provides microscopic insights towards the gas hydrate formation and dissociation in porous media and the study of CH4/CO2 hydrate replacement. We also reviewed the state of the art application of NMR based technology in research on the gas-liquid multiphase flow and temperature mapping within porous media. Potential improvements in NMR technology to improve the fundamental understanding towards gas hydrates is also discussed in this review article.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 1%
Top 10%
Top 10%
Related to Research communities
Energy Research