Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable and Sustainable Energy Reviews
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain

Authors: Maha AlSabbagh; Maha AlSabbagh; Astrid Guehnemann; John Barrett; Yim Ling Siu;

Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain

Abstract

The transport sector is one of the fastest-growing energy-consuming sectors in the world and it contributes greatly to emissions of carbon dioxide equivalent (CO2e). In Bahrain, CO2e emissions from the transport sector grew by an average of 8% annually between 1994 and 2006. The aim of this research was to develop an integrated approach to assess the measures adopted to reduce CO2e emissions by the transport sector within the context of climate change mitigation. This approach used the multi-criteria analysis methodology of the Analytic Hierarchy Process (AHP) to embed conventional assessment methods and a participatory approach. Three extensions to the original AHP methodology were developed: multi-AHP models, scenario packaging, and the examination of the plausibility of the results. The AHP results showed that certain fuel economy standards achieved the highest scores against five qualitative and quantitative criteria. Using socially and politically acceptable options, an integrated approach to CO2e mitigation could achieve a reduction in emissions of around 22% by 2030 (compared with 2010), at a cost of USD 112 per metric tonne of avoided CO2e emissions. Results from surveys of policymakers, experts, and the general public indicated that the outcomes of scenario packaging were plausible. The contributions of this research are two-fold. First, for the first time in Bahrain, the preferences of the general public have been considered and integrated with both the preferences of policymakers and experts and the results obtained from conventional assessment methods. Second, a structured approach for the integration of different assessment methods, transferable to other contexts, was developed and examined. Furthermore, multi-AHP models were introduced that can reflect the preferences of different concerned groups. Applications of this approach include assessment of the implementation of mitigation measures that could affect a number of concerned groups, decision making in energy-consuming sectors, and development of mitigation policy packages.

Country
United Kingdom
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Green
hybrid