Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of vanadium based hydrogen storage material: A review

Authors: Ankur Jain; Takayuki Ichikawa; Yoshitsugu Kojima; Gautam Kumar Dey; Sanjay Kumar; Sanjay Kumar;

Development of vanadium based hydrogen storage material: A review

Abstract

Abstract The metallic vanadium has an excellent hydrogen storage properties in comparison to other hydride forming metals such as titanium, uranium, and zirconium. The gravimetric storage capacity of vanadium is over 4 wt% which is even better than AB2 and AB5 alloys. The metallic vanadium has shown high hydrogen solubility and diffusivity at nominal temperature and pressure conditions. Consequently, vanadium is under consideration for the cost-effective hydrogen permeation membrane to replace palladium. The issues with vanadium are poor reversibility and pulverization. The poor reversibility is because of high thermal stability of β (VH/V2H) phase which eventually restricts the cyclic hydrogen storage capacity up to 2 wt% at room temperature. The pulverization is because of large crystal misfit between the metal and metal hydride phase. The hydrogen solubility, phase stability, hydrogenation-dehydrogenation kinetics, and pulverization are highly influenced by the presence of an alloying element. Therefore, worldwide efforts are to explore and optimize the alloying element which could enhance the hydrogen solubility, destabilized the β phase, improved the hydrogenation-dehydrogenation kinetics, and prevent the pulverization. The current review is a systematic presentation of these efforts to resolve the issues of vanadium as a base material for hydrogen storage and permeation membrane.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    197
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
197
Top 1%
Top 10%
Top 1%
Related to Research communities
Energy Research