Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A review of data-driven approaches for prediction and classification of building energy consumption

Authors: Song Pan; Yong Shi; Xingxing Zhang; Jinshun Wu; Liang Xia; Yixuan Wei; Mengjie Han; +1 Authors

A review of data-driven approaches for prediction and classification of building energy consumption

Abstract

Abstract A recent surge of interest in building energy consumption has generated a tremendous amount of energy data, which boosts the data-driven algorithms for broad application throughout the building industry. This article reviews the prevailing data-driven approaches used in building energy analysis under different archetypes and granularities, including those methods for prediction (artificial neural networks, support vector machines, statistical regression, decision tree and genetic algorithm) and those methods for classification (K-mean clustering, self-organizing map and hierarchy clustering). The review results demonstrate that the data-driven approaches have well addressed a large variety of building energy related applications, such as load forecasting and prediction, energy pattern profiling, regional energy-consumption mapping, benchmarking for building stocks, global retrofit strategies and guideline making etc. Significantly, this review refines a few key tasks for modification of the data-driven approaches in the context of application to building energy analysis. The conclusions drawn in this review could facilitate future micro-scale changes of energy use for a particular building through the appropriate retrofit and the inclusion of renewable energy technologies. It also paves an avenue to explore potential in macro-scale energy-reduction with consideration of customer demands. All these will be useful to establish a better long-term strategy for urban sustainability.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    597
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
597
Top 0.1%
Top 1%
Top 0.1%