Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Overview of micro-channel design for high heat flux application

Authors: Ming Kun Yew; Farazila Yusof; Lip Huat Saw; Nor Haziq Naqiuddin; Ming Chian Yew; Tan Ching Ng;

Overview of micro-channel design for high heat flux application

Abstract

Abstract Recent advancement in the micro-scale and nano-scale electronics systems, the demand of an innovative solution for the thermal management to dissipate the high amount of heat flux generated have become more rigorous to ensure good reliability of the devices. Micro-channel heat sink has been introduced to dissipate the heat flux with capacity of 10 MW m−2, which providing an ideal solution in the thermal management technology. Researches have been done experimentally or numerically to investigate effect of different geometric designs of micro-channel heat sinks to promote better heat transfer between micro-channel walls and cooling fluid. Other than micro-channel geometric design, type of cooling fluids and two-phase flow boiling are important issues in the micro-channel based thermal management system. In addition, applications of nano-fluids in the micro-channel heat sink are also highlighted which helps in improving the thermal conductivity of the coolant and leads to better heat dissipation rate. In addition, applications of micro-channel in the engineering sector such as solar cell, fuel cell and medical devices are reviewed. For the literature, implementation of micro-channel in the electronic devices as a thermal management solution is highly recommended due to its ability to protect and prolong the lifespan of electronic devices.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    253
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
253
Top 0.1%
Top 1%
Top 0.1%