Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inter-fuel substitution path analysis of the korea cement industry

Authors: Sung-Yoon Huh; Donghyun Lee; Hyejin Lee; Jungwoo Shin; Jin-Young Jang;

Inter-fuel substitution path analysis of the korea cement industry

Abstract

Abstract Many countries have employed various policy measures to reduce industrial CO2 emissions. The cement industry plays a crucial role in emissions reduction because it accounts for a substantial proportion of global emissions. This study analyzes the inter-fuel substitution paths for the cement industry, along with its impacts on emissions reduction. A mixed multiple discrete-continuous extreme value (MDCEV) model is used to accommodate for the heterogeneity of firms’ preferences for fuel mixes. The proposed model is empirically verified using firm-level data collected from 1998 to 2011 for Korean cement production firms. The results show that firms’ marginal utilities from using bituminous coal are still larger than those from other alternative fuels. The determinants of the firms’ alternative fuel choices are different according to the individual fuel types, but the price of bituminous coal has a primary impact, generally speaking. Scenario analysis shows that 10% and 20% increases in bituminous coal prices will lead to roughly 1.30 million and 1.58 million tons of CO2 reduction for the Korean cement industry, respectively. This study analyzes the selection and consumption patterns according to fuel types among cement producers, and also predicts its impacts on emissions reduction. Further, our study also provides policy implications for the government, which plays a crucial role in designing incentives for firms to use alternative fuels more often.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%