Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable and Sustai...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Review of biodegradable synthetic-based drilling fluid: Progression, performance and future prospect

Authors: Razali, S. Z.; Yunus, Robiah; Abdul Rashid, Suraya; Lim, Hong Ngee; Mohamed Jan, Badrul;

Review of biodegradable synthetic-based drilling fluid: Progression, performance and future prospect

Abstract

Abstract This paper provides a comprehensive review on ester based drilling fluid (EBDF). It is no secret that esters with biodegradability and bioaccumulation attributes are among the promising alternatives to synthetic base oil in drilling fluids. The findings from the literature explained the critical parameters for drilling fluid base which are i) kinematic viscosity, ii) pour point and iii) flash point iv) thermal stability and v) hydrolytic stability and vi) elastomer compatibility. In an ideal case, an EBDF requires base oil with low viscosity, low pour, high flash point, high thermal and hydrolytic stability and compatibility with existing elastomer. However in the real application, these requirements may not be the same as the bottom hole condition which is always subjected to high pressure and high temperature environment. At the moment, the performance of EBDF is considered outstanding for normal borehole depth and complexity. Nevertheless the constraints such as low temperature at the seabed while high temperature and high pressure at the bottom hole may be slightly different when dealing with an EBDF. This is due to its unique molecular structure of ester. Affected parameters include i) high kinematic viscosity, ii) hydrolytic degradation and iii) thermal stability. Failure in managing these parameters may lead to detrimental impacts on the drilling fluid performances and the fluid's stabilities. The application of low viscosity, high thermal and hydrolytic properties of esters and combination with unique carbon based nanomaterials into formulation might be able to close the gap of current EBDF performances.

Country
Malaysia
Keywords

532

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 1%
Top 10%
Top 1%
bronze