Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Geothermal power in China: Development and performance evaluation

Authors: Changbo Wang; Lixiao Zhang; Mingyue Pang; Mingyue Pang; Yang Li; Ji Han;

Geothermal power in China: Development and performance evaluation

Abstract

Abstract Geothermal power has received a great deal of attention in China as the country strives to be less dependent on coal energy and to seek stable and base load renewable power. The country's 13th Five-Year Plan for geothermal energy calls for an additional 500 MW by 2020. To assess whether this ambitious target can be achieved, this paper provides an overview of the environmental and economic performance of geothermal power based on an emergy evaluation and economic analysis of the Yangbajain plant in Tibet, the largest working geothermal power plant in China. The results indicate that the full flow system that the plant currently uses has a much higher production efficiency than the dry steam geothermal power plant in Italy. In addition, the system exhibits a relatively good environmental sustainability compared to other renewable energy generation technologies. However, it is still not economically feasible without government subsidies. Labor is expensive due to the high demand for trained professionals and the harsh working conditions in Tibet. Since China's high-quality geothermal resources are mainly located in Tibet, it would be quite challenging to achieve the ambitious 500 MW target by 2020. However, considering its environmental competitiveness, attractive subsidy policies and support for scientific research to promote technological innovations are proposed in this study to encourage the growth of the geothermal power industry in China, which would provide the country with another valuable alternative to coal.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 1%
Top 10%
Top 1%