Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Humidification-dehumidification desalination systems driven by thermal-based renewable and low-grade energy sources: A critical review

Authors: Naef A.A. Qasem; Dahiru U. Lawal;

Humidification-dehumidification desalination systems driven by thermal-based renewable and low-grade energy sources: A critical review

Abstract

Abstract Thermal-based renewable and low-grade energy sources to operate humidification-dehumidification (HDH) desalination systems are critically reviewed. The investigated renewable energy sources are solar energy and geothermal energy. The low-grade energy sources such as the waste heat of photovoltaic thermal (PV/T) panels, refrigeration and heat pump systems, and power plants are also investigated. For each hybrid HDH with another driving system, the details of HDH construction, performance, hybridization method, and general observations are summarized and compared in tabular forms. Most of the studies focused on using solar energy and refrigeration and heat pump systems to drive HDH systems. The best performance indices (i.e., gained output ratio (GOR), freshwater production, and freshwater cost) can be obtained by the integration of HDH systems with power plants and then by geothermal energy, especially when a large quantity of freshwater is needed (>200 kg/h). Refrigeration systems and solar collectors can lead to higher GOR, medium water production, and higher cost. The application of PV/T results in the lowest water production. Despite the high performance of HDH driven by power plants and vapor-compression refrigeration systems, geothermal energy, solar collectors, and PV/T panels could be the right choices for hybridization with HDH systems in off-grid regions.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    113
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
113
Top 1%
Top 10%
Top 1%