Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recent advances and development in optimal design and control of ground source heat pump systems

Authors: Zhenjun Ma; Lei Xia; Xuemei Gong; Georgios Kokogiannakis; Shugang Wang; Xinlei Zhou;

Recent advances and development in optimal design and control of ground source heat pump systems

Abstract

Abstract Ground source heat pump (GSHP) systems have attracted wide attention in developing energy-efficient buildings. Considering the high upfront cost of GSHP systems, appropriate design and control optimization are essential to enhancing their energy efficiency and reducing the payback period. Since there are many variables influencing the performance of GSHP systems, the commonly used rule-based approaches cannot ensure that the system is designed and operated in an optimal manner. This paper presents an overview of recent advances and development in optimal design and control of GSHP systems, aiming to provide some concluding remarks and recommendations for future research in this direction. The general optimization problems for optimal design and control of GSHP systems are first presented. Sensitivity analysis to determine the major variables to formulate the optimization problems is then discussed. Furthermore, recent progress in optimal design and control of GSHP systems is reviewed. The results showed that an increasing number of single-objective and multi-objective design optimization strategies for GSHP systems have been developed, which seems more robust than commonly used rule-based design approaches. It was shown that optimal control can provide a better operating performance of GSHP systems as compared to rule-based control methods. The majority of studies used a model-based approach to formulate the control problem and model predictive control could play an essential role in renewable integrated GSHP systems. However, studies on optimal control of GSHP systems are insufficient and development of energy-efficient control strategies and evaluation of their control reliability, effectiveness and long-term performance are needed.

Country
Australia
Related Organizations
Keywords

Engineering, Science and Technology Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 1%
Top 10%
Top 1%