Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimization and energy-economic assessment of a geothermal heat pump system

Authors: Farshad Moradi Kashkooli; Masoud Ziabasharhagh; Majid Soltani; Pooya Farzanehkhameneh;

Optimization and energy-economic assessment of a geothermal heat pump system

Abstract

Abstract The high geothermal heat exchanger (GHE) installation cost is the main challenge encountered in the widespread use of geothermal heat pump (GHP) systems, so its optimization is vital for reducing the costs. In the present study, five main parameters ─the radius, length, and the number of wells, the external pipe's radius, and the flow discharge inside the pipe─ are optimized by genetic algorithm (GA) for a residential building in Tehran. Moreover, sensitivity analysis of several design parameters, which are not considered in the objective function, indicates that pipe thermal conductivity, borehole thermal conductivity, soil thermal conductivity, and borehole distance parameters had the highest effects on entropy generation (EG), respectively. Therefore, this approach can help engineers to select the most efficient parameters for improving their design. Eventually, the optimized GHP is investigated by energy and economic viewpoints. One-year energy simulation of these systems is conducted to determine the energy consumption. Simulation results suggest that the annual energy consumption of the GHP with the coefficient of performance (COP) of 5.6 is 10.111 MWh; whereas, the annual consumption of heat pumps with an air-source heat pump equals 42.222 MWh, which is 4.17 times greater than that of the GHP. A simulation over a 10-year period is also performed to consider the drop in performance of the GHE over time. Furthermore, the economic analysis results suggest that the payback period of this system is about 7.4 years, and the energy subsidy paid by the government will be reduced annually to 14, 417, 839 Iranian Rial (IRR).

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 1%
Top 10%
Top 10%