Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Application of intermittent ball milling to enzymatic hydrolysis for efficient conversion of lignocellulosic biomass into glucose

Authors: Shengbo Ge; Shengbo Ge; Changlei Xia; Changlei Xia; Yingji Wu; Jechan Lee; Ki-Hyun Kim; +5 Authors

Application of intermittent ball milling to enzymatic hydrolysis for efficient conversion of lignocellulosic biomass into glucose

Abstract

Abstract Hydrolysis of lignocellulosic biomass is important for isolation of glucose in a biorefinery. In this research, intermittent ball milling was applied to facilitate and enhance enzymatic hydrolysis of dilute acid-pretreated lignocellulosic biomass, with the highest glucose yield of 66.5% at a low enzyme dose (10 FPU g−1 glucan) over 24h. In comparison, the yield for the typical liquid-state enzymatic hydrolysis was only 38.7% for 24h, although it reached 69.0% after 72h. Glucose yield increased further to 84.7% using the delignified lignocellulosic biomass after a 24 h intermittent ball milling process. The observed glucose yield (24h) is comparable to the desired 80% (72h) milestone yield set by the US DOE but only with a three times shorter processing time despite the differences in experimental conditions. Further, the amount of solvent needed for the intermittent ball milling process was 25-folds reduced, compared with typical hydrolysis. Intermittent ball milling was useful for enhancing the performance of enzymatic hydrolysis with favorable adsorption of enzymes into cellulose. It also exhibited high efficiency in enzymatic hydrolysis of lignocellulosic biomass relative to continuous ball milling. It was suggested that ball milling could help distribute enzymes into cellulose, however, continuous ball milling would simultaneously separate enzymes from cellulose before the completion of hydrolysis. Therefore, intermittent ball milling could facilitate enzymes distribution and leave enough time for them to consume the boned cellulose chains. This technology should be beneficial for development of more effective and environmentally benign approaches to enzymatic hydrolysis to effectively isolate glucose from lignocellulosic biomass.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 1%
Top 10%
Top 1%
bronze